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2018.—Different neuron types serve distinct roles in neural process-
ing. Extracellular electrical recordings are extensively used to study
brain function but are typically blind to cell identity. Morphoelectrical
properties of neurons measured on spatially dense electrode arrays
have the potential to distinguish neuron types. We used high-density
silicon probes to record from cortical and subcortical regions of the
mouse brain. Extracellular waveforms of each neuron were detected
across many channels and showed distinct spatiotemporal profiles
among brain regions. Classification of neurons by brain region was
improved with multichannel compared with single-channel wave-
forms. In visual cortex, unsupervised clustering identified the canon-
ical regular-spiking (RS) and fast-spiking (FS) classes but also indi-
cated a subclass of RS units with unidirectional backpropagating
action potentials (BAPs). Moreover, BAPs were observed in many
hippocampal RS cells. Overall, waveform analysis of spikes from
high-density probes aids neuron identification and can reveal dendritic
backpropagation.

NEW & NOTEWORTHY It is challenging to identify neuron types
with extracellular electrophysiology in vivo. We show that spatiotem-
poral action potentials measured on high-density electrode arrays can
capture cell type-specific morphoelectrical properties, allowing clas-
sification of neurons across brain structures and within the cortex.
Moreover, backpropagating action potentials are reliably detected in
vivo from subpopulations of cortical and hippocampal neurons. To-
gether, these results enhance the utility of dense extracellular electro-
physiology for cell-type interrogation of brain network function.

backpropagating action potentials; BAPs; classification; extracellular
waveform; in vivo; Neuropixels

INTRODUCTION

Brain networks are composed of diverse cell types with
distinct roles in neural dynamics and processing. For example,
in the neocortex, excitatory pyramidal neurons provide local
recurrent processing and send long-range projections for infor-
mation propagation (Harris and Shepherd 2015; Spruston
2008), whereas inhibitory neurons perform gain modulation,
control spike timing and rhythms, and shape receptive field

properties (Isaacson and Scanziani 2011; Kepecs and Fishell
2014; Markram et al. 2004). Thus a mechanistic understanding
of brain function requires a cell type-specific approach. Neu-
ronal cell types are defined by various properties including
gene expression, morphology, physiology, and connectivity
(Baden et al. 2016; Gouwens et al. 2018; Harris and Shepherd
2015; Kim et al. 2017; Markram et al. 2004; Tasic et al. 2016;
Zeng and Sanes 2017). Although imaging of genetically en-
coded calcium sensors can be used to measure activity of
identified neuronal subpopulations (Luo et al. 2008), this
method has much lower temporal resolution compared with
electrophysiological recordings and can be difficult in deep
brain structures. Antidromic stimulation has historically been a
powerful method for identifying cell types on the basis of
long-range projection targets (Li et al. 2015; Lipski 1981;
Sommer and Wurtz 2004) but typically is not sufficient for
identifying local cell types. Optotagging can link extracellular
spike measurements to cell types by directly photo-stimulating
cells that express a light-sensitive opsin under genetic control
(Cohen et al. 2012; Kvitsiani et al. 2013; Lima et al. 2009), but
this is largely restricted to transgenic systems and usually only
labels one cell population per experiment.

Extracellular electrical recordings are widely used to mea-
sure single-neuron spiking activity in vivo during active be-
havior. Previous studies have shown that action potential shape
can provide information about the cell type being recorded
(Kawaguchi 1993; McCormick et al. 1985). Conventionally,
single-unit waveforms are divided into two broad categories:
regular spiking (RS), which represent pyramidal neurons and
some inhibitory neurons, and fast spiking (FS), which largely
correspond to inhibitory interneurons (Andermann et al. 2004;
Bortone et al. 2014; Bruno and Simons 2002; Mitchell et al.
2007; Niell and Stryker 2008; Peyrache et al. 2012; Sirota et al.
2008; Swadlow 2003). In general, RS neurons are character-
ized by broader action potentials with spike frequency adapta-
tion, whereas FS neurons have relatively brief-duration action
potentials with little adaptation (Hu et al. 2014; Markram et al.
2004). This classification is supported by the correlation be-
tween extracellular waveform and intrinsic electrophysiologi-
cal properties (Anastassiou et al. 2015; Buzsáki et al. 2012;
Gold et al. 2006; Henze et al. 2000). The ability to more
generally link cell classes to extracellular action potential
waveform features would enhance many studies of circuit-level
functions in the brain.
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Recent developments in high-density silicon probe technol-
ogy permit enhanced spatial sampling of extracellular wave-
forms from single units in vivo (Blanche et al. 2005; Chung et
al. 2018; Jun et al. 2017; Neto et al. 2016; Ruther and Paul
2015; Scholvin et al. 2016; Shobe et al. 2015). The close
spacing of electrode contacts on these probes (25 �m or less)
allows each unit’s waveform to be detected by many sites
simultaneously, thereby providing a rich spatiotemporal extra-
cellular waveform profile. Since both electrical and morpho-
logical properties are key attributes of cell types (Ascoli et al.
2007; Gouwens et al. 2018; Jiang et al. 2015; Zeng and Sanes
2017), the densely sampled extracellular waveforms might
provide a signature for different cell classes. Indeed, both
modeling and empirical studies in vitro suggest that such
detailed extracellular action potential waveforms can, in prin-
ciple, be used for cell classification (Buccino et al. 2018;
Delgado Ruz and Schultz 2014). Evidence from in vivo studies
also suggest cell type-specific morphoelectrical properties. For
example, backpropagating action potentials (BAPs) (Beresh-

polova et al. 2007; Buzsáki and Kandel 1998; Stuart et al.
1997; Stuart and Sakmann 1994; Waters et al. 2005) are
observed in putative pyramidal neurons as traveling waves
along linear recording probes, but not in FS neurons (Beresh-
polova et al., 2007; Buzsáki and Kandel, 1998). In the current
study, we used a new high-density silicon probe, Neuropixels
(Jun et al. 2017), to make large-scale electrophysiological
recordings in the awake mouse brain and investigated the
properties of spatiotemporal extracellular waveform profiles of
individual neurons. Specifically, we sought to address whether
detailed features from these higher resolution waveforms can
facilitate cell classification across different brain regions and
within cortex (Fig. 1, A and B).

Diverse morphoelectrical properties across cortical and sub-
cortical structures are well documented in previous studies
(Ascoli et al. 2007; Bean 2007; Stuart et al. 1997). For
example, most thalamic neurons have symmetric, radial den-
drites (Clascá et al. 2012; Jones 2012), whereas cerebellar
Purkinje cells have elaborate, highly branched dendritic arbors,

Fig. 1. Experimental setup including regions and example neuron classes. A: data are collected with Neuropixels probes inserted into the awake mouse brain.
The 384 electrode sites are densely arranged along the linear shank of the silicon probe (20-�m vertical spacing, 2 sites per row). Black squares indicate the
location of recording sites. B: schematic illustrating our working model showing that extracellular waveforms at different spatial locations relative to the neuron
can reflect cell type-specific morphoelectrical features. C: illustrations of brain regions targeted for recordings (from Allen Mouse Brain Atlas). In the visual
cortex, we recorded from V1 and two higher visual areas, AM and RL (different blues). In subcortical regions, we recorded from dorsal hippocampus (HP; green),
lateral geniculate nucleus (LGN; pink), lateral posterior nucleus (LP; purple), superior colliculus (SC; brown), and cerebellum (Ce; gray). Scale bar indicates
1 mm. D: example cell reconstructions from different brain regions to illustrate morphological diversity. Reconstructions are from Allen Cell Types Database
(http://celltypes.brain-map.org/) and NeuroMorpho Database (http://www.neuromorpho.org/; Ascoli et al. 2007). Dendrites are shown in black, and cell body
location is denoted with a red circle. PV�, parvalbumin expressing.
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both of which are distinct from pyramidal neurons that have
elongated apical dendrites that support BAPs. Therefore, in this
study, we recorded from multiple brain areas to test whether
multichannel waveform analysis could reliably identify cells
with known morphoelectrical differences. We applied classifi-
cation and clustering algorithms to single- and multichannel
features of extracellular spike waveforms recorded in the visual
cortex, hippocampus, thalamus, superior colliculus, and cere-
bellum of the awake mouse brain (Fig. 1, C and D). By
combining signals from multiple channels, we could more
accurately classify neurons from different brain regions.
Within the local circuitry of the neocortex and hippocampus,
unsupervised clustering recapitulated the conventional RS and
FS division but also suggested additional waveform diversity.
We validated the FS cluster by using optogenetics to link
recordings to genetically identified parvalbumin-expressing
(PV�) neurons. A substantial number of RS units in both
visual cortex and hippocampus showed evidence of BAPs, but
the FS cluster did not. These putative BAPs are reliably
observed in vivo, and their signature can help differentiate cells
within local circuits of the cortex and hippocampus. We
conclude that dense sampling of the extracellular waveform
with next-generation extracellular probes provides additional
information for cell-type and brain region classification based
purely on spike waveform, which can complement additional
methodologies for dissecting cell type-specific neural network
functions.

METHODS

Data Acquisition and Preprocessing

Animal preparation. All experimental procedures were ap-
proved by the Allen Institute for Brain Science Institutional
Animal Care and Use Committee. For recordings in visual
cortex and hippocampus, a metal headframe with a 10-mm
circular opening was attached to the skull with Metabond. In
the same procedure, a 5-mm-diameter craniotomy was drilled
over left visual cortex and sealed with a circular piece of
polydimethylsiloxane (PDMS) silicone, ~0.3 mm thick (Heo et
al. 2016). Following a 2-wk recovery period, a visual area map
was obtained through intrinsic signal imaging (Juavinett et al.
2017). On the day of the experiment, the mouse was placed
under light isoflurane anesthesia for ~40 min to remove the
silicone window. A ground wire was secured to the skull, and
the exposed brain was covered with a layer of 4% agar in
artificial cerebrospinal fluid (ACSF). Following recovery from
anesthesia, the mouse was head-fixed on the experimental rig.
Three or more Neuropixels probes coated in CM-DiI were
independently lowered vertically into visual cortex at a rate of
100 �m/min using a piezo-driven microstage (New Scale
Technologies). When the probes reached their final depths of
1,200–1,500 �m, the tip of each probe extended through visual
cortex into hippocampus.

For cerebellar recordings, skin and muscle were resected
from above the posterior skull to expose the skull above the
cerebellum. Animals were fitted with an aluminum head plate
with a 5-mm circular opening above the exposed skull. On the
day of recording, the animal was anesthetized and burr holes
were made in several locations above the cerebellar cortex. The
animal was then head-fixed in the recording apparatus and

allowed to recover from anesthesia. For each insertion (n � 3
in one mouse), a Neuropixels probe coated in DiI was lowered
through a burr hole to a final depth of 3.4–3.6 mm from the pia
at a fixed rate of 100 �m/min. The probe was fixed at a roughly
15° angle relative to the dorsal plane of the skull, resulting in
a 6°–19° angle relative to the cerebellum surface for each
insertion. Recordings extended through multiple ganglionic
layers and into the reticular nuclei (Supplemental Fig. S1;
supplemental material for this article is available at https://
github.com/jiaxx/waveform_classification). The probe was al-
lowed to rest in place for at least 15 min following insertion
before data were recorded.

For lateral posterior nucleus (LP), lateral geniculate nucleus
(LGN), and superior colliculus (SC) recordings, a metal head-
frame was attached to the skull with Metabond. One week after
surgery, mice were handled (3–5 days) and habituated to head
fixation (~2 wk). On the day of recording, the animal was
anesthetized with isoflurane and a small burr hole (~200-�m
diameter) was drilled according to stereotactic coordinates (in
mm relative to lambda, LP/LGN: 1.5–2.2 anterior, 1.9–1.5
lateral; SC: 0.25 anterior, 0.5 lateral). Mice were given 2 h to
recover before being head-fixed in the recording apparatus. A
Neuropixels probe was coated in DiI and lowered through
the burr hole at a rate of 200 �m/min to a final depth of
3–3.3 (for LP and LGN) or 1.3–1.6 (SC) mm from the brain
surface. The probe was allowed to settle for 30 min before
recording began. For most mice, recordings were made on 2
consecutive days.

Data acquisition system. In vivo recordings were performed
in awake, head-fixed mice allowed to run freely on a rotating
disk. During the recordings, the mice either passively viewed
visual stimuli or remained in the dark. For recordings in visual
cortex and hippocampus (HP), data were collected from 11
mice (25 probe insertions). On average, we recorded 64 � 6
units in cortex per probe insertion. For recordings in LP, LGN,
and SC, data were collected from 31 mice (n � 18 in LP, 4 in
LGN, and 9 in SC). For recordings in cerebellum (Ce), data
were collected from one mouse with three different penetra-
tions. All data were acquired with Neuropixels probes (Jun et
al. 2017) with 30-kHz sampling rate and recorded with the
Open Ephys GUI (Siegle et al. 2017). A 300-Hz high-pass filter
was present in the Neuropixels probe, and another 300-Hz
high-pass filter (3rd-order Butterworth) was applied offline
before spike sorting.

Histology. For recordings in visual cortex and HP, the probe
location was confirmed by clearing brains with dichlorometh-
ane and dibenzylether (https://idisco.info/idisco-protocol/) and
imaging with optical projection tomography (OPT; Supple-
mentary Fig. S1A). OPT showed most recordings from HP
were from CA1 region given our probe insertion location and
depth. To assign probes to specific visual areas, we overlaid an
image of the brain surface obtained during the recording
session on images obtained from intrinsic signal imaging,
using the vasculature for registration (Supplementary Fig.
S1B). For recordings in other brain areas, recording location
was subsequently verified by identifying the DiI fluorescence
in sectioned brain tissue (Supplementary Fig. S1, C–F).

Data preprocessing. In all experiments, spike times and
waveforms were automatically extracted from the raw data
using Kilosort (Pachitariu et al. 2016). Kilosort is a spike-
sorting algorithm developed for electrophysiological data re-
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corded by hundreds of channels simultaneously. It implements
an integrated template matching framework for detecting and
clustering spikes, rather than clustering based on spike fea-
tures, which is commonly used by other spike-sorting tech-
niques. The outputs of Kilosort were loaded into phy (Rossant
et al. 2016) for manual refinement, which consisted of merging
and splitting clusters, as well as marking non-neural clusters as
“noise.” Noise units were identified by their abnormal wave-
form shape, as well as distinct cyclical patterns in the autocor-
relogram. Merges were made when the cross-correlogram
between two units dropped to near zero at a 1 to 2 ms temporal
offset, indicating the presence of a refractory period. Splits
were made when the spikes for one unit displayed multiple
readily separable clusters when projected in principal compo-
nent analysis (PCA) space. In this case, a boundary was
manually drawn around one of the clusters, thereby splitting
the unit in two. If the resulting cross-correlogram showed no
evidence of a refractory period, the split was maintained;
otherwise, the split was reverted. We then used a set of
heuristic rules based on the features of waveforms to remove
abnormal waveforms [the parameters used for this purpose
were peak-to-trough (PT) ratio �0.99 and recovery slope �0].
No further constraints were imposed.

Waveforms for each unit were extracted from the raw data
by slicing around the trough time (pre-trough points � 20
samples, total waveform size � 82 samples, with 30-kHz sam-
pling rate). For each unit, the mean waveform was calculated
from bootstrapped waveforms (number of spikes � 100; num-
ber of repetitions � 100) from all spikes. If the number of
spikes for a given unit was smaller than 100, then all the
waveforms were used to calculate the mean waveform. Mean
waveforms for experiments with optotagging were calculated
only on waveforms before the light stimulation period, to avoid
artifacts in waveform traces caused by light.

Optotagging

Optotagging was performed in a subset of the visual cortex
experiments described above, using Pvalb-Cre � Ai32 (ChR2
reporter) mice. In each experiment, a 200-�m-diameter bare
fiber-optic cable (Thorlabs) connected to a 465-nm light-
emitting diode (LED; Plexon) was aligned with the center of
the cranial window such that it illuminated a surface area of
~20 mm2. Stimulus trains were delivered with a Cyclops LED
driver and consisted of 2.5-ms square-wave pulses at 10 Hz,
individual square-wave pulses lasting 5 or 10 ms, or 1-s raised
cosine ramps. Peak light power varied from 0.1 to 10 mW on
a given trial. Each stimulus condition (pulse type � power)
was repeated 120 times. Light artifacts were visible on all
channels but were readily separable from actual spikes based
on timing relative to the stimulus and waveform shape.

Analysis

Waveform feature extraction. To classify cell types, we first
extracted features from the extracellular waveform. With high-
density Neuropixels probes, we recorded extracellular wave-
forms of a single unit from multiple sites. We define the
recording site with highest amplitude (absolute difference be-
tween trough and peak of an extracellular waveform) as the site
closest to neuron soma, and the extracellular waveform re-
corded here is our single-channel waveform. To take advantage

of signals detected by multiple sites, we consider the profile of
extracellular waveforms of a single sorted unit recorded from
multiple adjacent recording sites as a multichannel waveform.
The probe was inserted along the dorsal-ventral axis of the
brain. Because the Neuropixels probe has two recording sites at
each depth, we used only the side of the probe with higher
waveform amplitude to calculate the multichannel waveform.
The distance between sites is approximated by their vertical
spacing (20 �m). The horizontal spacing is ignored here, but it
could potentially contribute to differences between adjacent
sites.

For single-channel (1-channel) waveforms, we extracted five
features: amplitude, duration, PT ratio, repolarization slope,
and recovery slope (Fig. 2B). Waveform peak was defined by
the maximum point of extracellular waveform. Trough was
defined by the minimum point. Amplitude was defined by the
absolute difference between peak and trough. Duration was
defined by the time between waveform trough and peak. This
feature is commonly used to separate FS neurons from RS
neurons (McCormick et al. 1985; Mitchell et al. 2007; Niell
and Stryker 2008; Swadlow 2003). PT ratio was determined by
the absolute amplitude of peak divided by absolute amplitude
of trough relative to 0. The repolarization slope was defined by
fitting a regression line to the first 30 �s from trough to peak.
The recovery slope was defined by fitting a regression line to
the first 30 �s from peak to tail.

For multichannel waveforms (Fig. 3A), we extracted three
additional features in the space domain for classification:
spread along the probe and the inverse of propagation velocity
above and below soma along the probe. The spread of a unit
was defined by the distribution of its waveform amplitude. If
we plot amplitude against recording site distance relative to
soma, we get a curve with peak at 0 (Fig. 3C). We defined the
range with amplitude above 12% of the maximum amplitude as
the spread of a unit along the probe. The multichannel wave-
form has information in both time and space dimension for signal
propagation velocity estimation. Because the time difference be-
tween the trough of adjacent sites could be 0, to avoid infinite
numbers, we calculated the inverse of velocity (ms/mm) instead
by fitting a regression line to the time of waveform trough at
different sites against the distance of the sites relative to soma
(Buzsáki and Kandel 1998). All waveforms and features are
available at https://github.com/jiaxx/waveform_classification.

Random forest classification. To classify the brain structure
each unit belongs to with extracellular waveforms, we used
random forest classification. This supervised learning algo-
rithm provides the contribution of each feature to classification
accuracy. In addition, because the accuracy of random forest
classification is averaged across many estimators, it is less
likely to overfit the data than a decision tree. The two hyper-
parameters for our random forest classifier, the number of
estimators and the depth of the decision trees, were estimated
via grid search implemented in Scikit-Learn (Pedregosa et al.
2011) using fivefold cross-validation for different feature sets.
Because classifier performances for different feature sets pla-
teaued above certain hyperparameter values (see Supplemental
Fig. S4), we chose a fixed set of hyperparameters that reached
plateau performance (maximum tree depth � 14 and number
of estimators � 80) for all feature sets rather than fine-tuning
hyperparameters for individual set of features.
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All classifications were performed with a fivefold cross-
validation where the classifier was trained on a subset of the
data (80%), and then the classifier’s performance is evaluated
on the held-out test data (20%). Classification accuracy was
determined by the out-of-bag score, which is estimated on the
basis of the prediction accuracy of data left out in each fit of the
decision tree (estimator) on bootstrapped subsamples. Because
there were significantly more units in the visual cortex than
other brain regions, we subsampled 77 units (determined by
n � 78 units in cerebellum) randomly from all regions to
balance the size of the data set from different brain regions to
minimize the influence from underlying class distribution on
accuracy. The confusion matrix was computed by comparing
predicted classes with true classes for 100 subsampled data sets
under 100 random initial states. The trend of classification
accuracy compared across different feature sets is not different
between matched-sample classification and unbalanced-sample
classification.

K-means clustering. We applied k-means algorithm to de-
termine cell clusters within visual cortex. The k-means method

is a widely used clustering technique that seeks to find cen-
troids that minimize the average Euclidian distance between
points in the same cluster to the centroid. However, one of its
drawbacks is the requirement for the number of clusters, K, to
be specified before the algorithm is applied. We applied two
methods in estimating number of clusters in visual cortex (see
Supplemental Fig. S5). One method is the standard elbow
method, which estimates the percentage of variance explained
for a given number of K. The number of K is estimated at the
point when the curve turns to plateau. Another method esti-
mates the data distribution for a given K, calculated by a
density function f(K) (Pham et al. 2005). The value of f(K) is
the ratio of the real distortion to the estimated distortion. When
the data are uniformly distributed, the value of f(K) is 1. When
there are areas of concentration in the data distribution, the
value of f(K) decreases. Therefore, the number of K clusters is
determined by finding the minimum value of f(K). Combining
estimation of K using the above two methods, we decided on K
and applied k-means to data with an appropriate number of K
for 1,000 times with random initial values.

Fig. 2. Spike waveform features extracted from single-channel waveforms. A: example normalized mean waveforms for single units from 8 different brain areas
(gray lines show 50 randomly sampled single units for each area; waveforms are normalized by amplitude). 1-ch, Single-channel; Ce, cerebellum; HP,
hippocampus; LGN, lateral geniculate nucleus; LP, lateral posterior nucleus; SC, superior colliculus; V1, AM, and RL, areas of visual cortex. B: illustration of
features extracted from single-channel waveform (green and blue circles indicate trough and peak, respectively). Amplitude is the absolute difference between
trough and peak. Duration is the time between trough and peak. Peak-to-trough ratio (PT ratio) is the ratio between amplitudes of peak and trough. Red lines
show slopes for repolarization and recovery. C: distributions of single-channel features in different brain regions. Violin plots show feature distributions estimated
with a kernel density function. The white dot indicates median, the thin line shows 95% bootstrapped confidence interval, and colors correspond to different areas
(V1, n � 1,111; AM, n � 234; RL, n � 264; HP, n � 369; LP, n � 485; LGN, n � 106; SC, n � 171; Ce, n � 78 units). The ANOVA one-way test is applied
to each feature across areas. All tests showed P �� 0.001. Statistics of post hoc pairwise comparison are available in Supplemental Fig. S2.
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t-Distributed stochastic neighbor embedding. t-Distributed
stochastic neighbor embedding (t-SNE) is a nonlinear dimen-
sionality reduction for the visualization of high-dimensional
data sets. We used Laures van der Maaten’s method (van der
Maaten and Hinton 2008) to visualize all units in two-dimen-
sional space with different features. The purpose is to visualize
whether units from same structure are mapped to similar
regions with a given feature set (Fig. 4A). We also visualized
unlabeled data to check whether there are any clusters in units
with a given feature set.

Classification of optotagged neurons. We developed a new
method to determine optotagged cells on the basis of their

response to different light stimulation patterns. Response post-
stimulus time histograms (bin size � 1 ms) to different light
patterns (individual square-wave pulses lasting 5 or 10 ms, or
1-s raised cosine ramps) were concatenated to form a response
vector for each unit, which resulted in an n_units (neurons) by
n_feature (time) matrix. We then normalized the matrix and
applied PCA to reduce the dimensionality while keeping 90%
variance. K-means was applied to the normalized data for
1,000 times with random initial value. This process was re-
peated 100 times to generate a probability matrix with each
pixel value indicating the probability of a pair of units belong-
ing to the same cluster. Hierarchical clustering was applied to

Fig. 3. Features extracted from multichannel waveforms. A: illustration of multichannel extracellular waveform of an example unit. The probe is inserted along the
dorsal-ventral axis of the brain and has two parallel columns of recording sites at each depth; for each unit, we used waveforms measured on one column of the probe
(see METHODS). The multichannel waveform includes the channel with the largest amplitude and 10 channels both above and below. In the heatmap, each row represents
the spike from one recording site over time; these same data are plotted as a time series at right. Green dots indicate waveform trough at each recording site. Red dashed
line indicates the spread of detectable extracellular waveform along the probe, defined in C). B: example multichannel waveforms from different brain areas showing
diverse profiles (see additional example waveforms in Supplemental Fig. S3). Ce, cerebellum; HP, hippocampus; LGN, lateral geniculate nucleus; LP, lateral posterior
nucleus; SC, superior colliculus; V1, AM, and RL, areas of visual cortex. C: amplitude of the example unit as a function of recording distance to soma. The spread of
the waveform along the probe is defined as the distance over which the spike amplitude is larger than 12% of the maximum amplitude. For the example unit, channels
within the defined spread are colored in red in A. D: propagation trajectory along the probe for the example unit. For each electrode location (y-axis; y � 0 indicates
potential soma location), the time of the waveform trough is plotted on the x-axis. Velocity above (v_above) and below (v_below) soma are separately estimated by linear
regression (red dashed lines). E: distributions of features extracted from multichannel waveforms in different brain regions: spread along probe (top), inverse of velocity
above soma (1/v_above; middle), and inverse of velocity below soma (1/v_below; bottom). The ANOVA one-way test is applied to each feature across areas. All tests
showed P �� 0.001. Statistics of post hoc pairwise comparison are available in Supplemental Fig. S2.
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the probability matrix to determine different clusters. The
cluster of units with responses that tightly follow the light
pattern was defined as optotagged cells. The rest were deter-
mined as non-optotagged units. These results were confirmed
with labeling based on changes in firing rate and the signifi-
cance of those changes (Hangya et al. 2015).

Current source density. For estimation of unit depth within
the cortex, we performed current source density (CSD) analy-
sis by computing the average evoked (stimulus locked) local
field potential at each site, smoothing these signals across sites,
and then calculating the second spatial derivative (Smith et al.
2013; Stoelzel et al. 2009). For spike-triggered CSD, we
applied the same metric to the average multichannel waveform
across units (Bereshpolova et al. 2007).

RESULTS

We analyzed extracellular action potentials recorded from
43 adult mice using Neuropixels probes. In each recording
session, the mouse was awake and head-fixed on a wheel to
allow free running behavior (Fig. 1A). After spike sorting with
semiautomated algorithms (Pachitariu et al. 2016; Rossant et
al. 2016), followed by manual quality control, we recovered
2,818 single units (see METHODS). The units were stable over the
recording session, and the average refractory period violations
were low (0.88 � 0.03% of total spikes per unit) (Supplemen-
tal Fig. S1). These units were recorded from eight brain
regions: primary visual cortex V1 (VISp; 1,111 units), cortical
visual area AM (VISam; 234 units), cortical visual area RL
(VISrl; 264 units), hippocampus (HP; 369 units, mostly dorsal

Fig. 4. Classification of unit brain region using extracellular waveform features. A: t-distributed stochastic neighbor embedding (t-SNE) visualization of units
from distinct brain regions based on different waveform features. Each dot corresponds to one unit, and brain regions are color coded (n � 2,818 units). From
left, t-SNE representations are computed with features extracted from 1-channel (1-ch) waveform, features extracted from both 1-ch and multichannel (multi-ch)
waveforms, a 1-ch waveform, and a multi-ch waveform. Ce, cerebellum; HP, hippocampus; LGN, lateral geniculate nucleus; LP, lateral posterior nucleus; SC,
superior colliculus; V1S, visual cortex. B: performance (out-of-bag score) classifying unit brain region based on 1-ch features alone (n_feature � 4), all extracted
features (n_feature � 7), principal component analysis-reduced (90% variance retained) waveform features (1-ch, n_feature � 5; multi-ch, n_feature � 52), and
the whole waveform (1-ch, n_feature � 60; multi-ch, n_feature � 1,800). ***P � 0.001, statistical comparisons between the performance of 1-ch and multi-ch
performed with Student’s t-test. Error bars are computed over different random samples without replacement (n � 100). C: importance of features calculated
with random forest classification: importance of extracted features (n_feature � 7; left), importance of 1-ch waveform (n_feature � 60; middle), and importance
of multi-ch waveform (n_feature � 1,800; right). D: confusion matrix of random forest prediction vs. true brain regions for different feature sets. Color indicates
proportion of units. The average of the diagonals corresponds to mean performance in B.
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CA1; see METHODS), lateral geniculate nucleus (LGN; 106
units), lateral posterior nucleus (LP; 485 units), superior col-
liculus (SC; 171 units), and cerebellum (Ce; 78 units) (Fig.
2A). On average, we recorded 64 � 6 units in cortex per probe
insertion. To verify the brain regions recorded by each probe,
we used post hoc histology, imaging, and annotation using the
Allen Mouse Common Coordinate Framework (Supplemen-
tary Fig. S1). Subregions of visual cortex (VISp, VISam,
VISrl) were determined by functional retinotopic mapping
before the experiment, and these maps were used to guide
probe insertion. Thus, for each recording, we could label each
sorted unit with its brain region. The action potential wave-
forms analyzed in this report refer to the mean waveform for
each sorted unit, which is calculated by taking a bootstrap-
ped average (number of spikes � 100; number of repeti-
tions � 100) from all spikes aligned by their trough (see
METHODS). We defined the single-channel waveform for a given
unit as the mean action potential recorded on the channel with
the largest amplitude; often this channel is assumed to be
closest to the soma (Buzsáki and Kandel 1998), and we follow
that convention here.

Comparison of Single-Channel Waveforms from Different
Brain Regions

We first investigated whether neurons in different brain
regions have distinct single-channel (1-channel) waveform
profiles (Fig. 2A; each line is the mean waveform for 1 unit,
normalized by amplitude). Units in the visual cortex and HP
show a diversity of 1-channel waveform shapes, including both
narrow and wide spikes; in contrast, 1-channel waveforms
from the Ce are more consistently narrow, whereas thalamic
cells are more consistently broad (Fig. 2A). To quantitatively
compare spikes, we extracted a series of features from the
1-channel waveforms, including amplitude, spike duration
(Barthó et al. 2004; Mitchell et al. 2007), PT ratio (Andermann
et al. 2004; Hasenstaub et al. 2005), repolarization slope after
trough (Niell and Stryker 2008), and recovery slope after peak
(Fig. 2B). The distribution of features from different brain
regions is plotted in Fig. 2C (Supplemental Fig. S2 shows
mean and confidence intervals). Previous studies have used
these parameters, particularly spike duration, to separate extra-
cellular waveforms into two classes labeled fast spiking (FS)
and regular spiking (RS) (Mitchell et al. 2007; Niell and
Stryker 2008). We observed that in the neocortex and HP, the
distributions of spike duration were bimodal, indicating the
presence FS and RS subpopulations in these regions (Fig. 2C).

In general, we found that 1-channel waveform features were
significantly different across brain areas (see Supplemental
Fig. S2 for statistical tests of all area-by-area comparisons).
Post hoc analysis using the paired t-test with Bonferroni
correction indicated that cortical neurons had smaller spike
amplitudes compared with the subcortical neuron types we
recorded. The spike duration of units recorded in visual cortex
and hippocampus were largely similar (all P values are re-
ported in Supplemental Fig. S2, where “n.s.” indicates P �
0.05 with Bonferroni correction) but differed from units re-
corded in the SC, Ce, and LP. Cortical neurons had larger PT
ratio compared with units in thalamus. Units in LP had the
longest duration (0.73 � 0.12 ms, mean � SD) and smallest
PT ratio (0.29 � 0.09) compared with units from other

brain regions. Waveforms recorded from SC (mean dura-
tion � 0.33 � 0.12 ms) and Ce (mean duration � 0.24 � 0.07
ms) were significantly narrower than other brain regions
(P �� 0.01). The above results reflected differences of single-
channel waveforms among neurons recorded in different brain
regions. Next, we investigated whether additional differences
could be revealed by analyzing multichannel waveforms.

Distinct Multichannel Waveforms Measured in Different
Brain Regions

Compared with traditional single-electrode and multielec-
trode arrays, one advantage of the Neuropixels probe is the
relatively dense arrangement of recording sites. Signals from a
single unit can be detected on many recording channels (see
Fig. 3f in Jun et al. 2017), providing an additional dimension
(space) to characterize cell type-specific spike properties. We
defined a multichannel spike waveform to include the maxi-
mum spike channel (closest to soma) and 10 additional chan-
nels above and below the peak channel, spanning �200 �m
along the probe. This multichannel spike waveform can be
visualized as a heatmap or as a series of voltage traces for each
electrode channel (Fig. 3A). Figure 3B shows example multi-
channel waveforms from eight different brain regions (with
additional single-unit examples shown in Supplemental Fig.
S3). The spatial extent of spike waveforms varied across areas.
In addition, we noticed that the trough of many spike wave-
forms appeared to propagate along the linear probe (see visual
cortical and HP units in Fig. 3, A and B, and Supplemental Fig.
S3) (Bereshpolova et al. 2007; Buzsáki and Kandel 1998).

To quantify and compare these spatiotemporal spike prop-
erties, we next computed several features designed to capture
the multichannel spread and propagation velocity. We defined
the spread as the distance spanning the contiguous set of
electrode sites with spike amplitude larger than 12% of the
peak channel (Fig. 3C). To characterize spike propagation, we
computed the time of the spike trough at each channel within
the spread of the spike as a function of channel distance
relative to soma (channel with peak amplitude). As shown in
Fig. 3D, the propagation velocity can be computed as the slope
of the trough distance vs. trough time. To avoid infinite values
caused by the waveform trough occurring on adjacent sites at
the same time for some waveforms, we computed the inverse
of the velocity separately for the spike propagating above and
below the cell body location.

The distributions of spread and propagation metrics showed
consistent differences across brain regions (Fig. 3E; ANOVA
1-way test: all P �� 0.001). Post hoc pairwise comparisons
using the paired t-test with Bonferroni correction showed that
the spread of units in LP, LGN, and SC is smaller than in other
regions (P � 0.05; Supplemental Fig. S3). Inverse of velocity
was indistinguishable among different visual cortical areas
(among V1, AM, RL; P � 0.05). The inverse of velocity above
soma was significantly positive in all visual cortical areas
(mean 1.83 � 0.03 ms/mm; 1-sample t-test, P �� 0.001),
indicating a bias for propagating waves dorsally toward the pia
(with mean velocity � 0.54 mm/ms). In contrast, in the dorsal
HP, where cells are oriented such that the apical dendrites point
ventrally, the inverse propagation velocity below soma was
significantly negative (�2.60 � 0.11 ms/mm; 1-sample t-test,
P �� 0.001), indicating a bias for propagating spike wave-
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forms toward the stratum radiatum in CA1 (mean veloc-
ity � 0.38 mm/ms). Further analysis of propagation profiles is
explored in Spike Waveform Clusters Within Visual Cortex and
Backpropagating Action Potentials in Cortex and Hippocam-
pus (see Fig. 6 and Supplemental Fig. S9).

Brain Region Classification Based on Extracellular
Waveforms

Because extracellular waveforms showed significantly dif-
ferent feature distributions across brain areas (Figs. 2 and 3,
Supplemental Fig. S2), we next tested whether these features
could be used to predict which brain region each unit resides in
and whether the multichannel waveform can provide additional
information beyond the 1-channel waveform for classifying
unit brain regions. We did not include waveform amplitude as
a feature for classification because it is strongly affected by the
relative distance of the electrode to soma (Gold et al. 2006;
Weir et al. 2015). Given the similarity of the waveforms
recorded in the three visual cortical areas (VIS: VISp, VISam,
VISrl), we grouped all the units from visual cortex in the
following analysis (n � 1,609 units).

To visualize whether there is any clustering of units in a
lower dimensional space with different waveform feature sets,
we first used t-SNE (van der Maaten and Hinton 2008), which
is a nonlinear dimensionality reduction technique to embed
high-dimensional data in a low-dimensional space for visual-
ization (Fig. 4A). Each dot represents one sorted unit, and the
color indicates the source brain region labeled by histology.
Embedding with features extracted from 1-channel waveforms
(n_feature � 4) was comparatively worse in forming clusters
of brain regions; in contrast, features extracted from multichan-
nel waveforms showed better separation among brain regions
with n_feature � 7. Use of the full single-channel waveform
(n_feature � 60) does not separate HP from cortical cells,
whereas use of the full multichannel waveform pushes HP and
thalamus far away from other regions. This visualization sug-
gests multichannel features contain more information to dis-
tinguish brain regions than single-channel waveforms, but this
nonlinear embedding is hard to interpret quantitatively.

To quantitatively assess area classification from high-density
recordings, we trained random forest classifiers to use wave-
form features to predict the brain region to which each unit
belongs. We chose random forest classification because this
method minimizes overfitting to training data and makes it
possible to assess the contribution of each feature to classifi-
cation accuracy. To remove potential classification bias that
could result from an imbalanced number of units from different
brain regions, we subsampled 77 units (without replacement)
randomly from each of six brain regions [VIS (including areas
VISp, VISam, VISrl) LGN, LP, SC, HP, and Ce]. Thus, for a
six-way classification, there is a 0.17 chance probability for
classifiers trained to predict brain regions. Hyperparameters for
random forest were chosen using grid search with fivefold
cross-validation (see METHODS for details; Supplemental Fig.
S4). We compared brain region classification based on differ-
ent sets of waveform features including 1) extracted features
(e.g., duration, PT ratio, inverse propagation velocity), 2) PCA
on 1-channel or multichannel waveform (90% retained vari-
ance), and 3) the entire 1-channel or multichannel spike wave-
form (Fig. 4B). Classification performance from all feature sets

was significantly above chance, with the highest equal to
85.1 � 1.6% for the multichannel waveform (SD across 100
different subsamples). Overall, classification performance was
improved by using features beyond the traditional 1-channel
features (t-test, P � 0.001), indicating that the spatiotemporal
profile of the spike waveforms carries additional relevant
information for clustering cells types from different brain
regions. Notably, if the additional features from the multichan-
nel waveform did not contain useful information for separating
neurons from different brain regions, adding these features
would not increase performance.

One advantage of random forest classification is its ability to
analyze the importance of the features for classification accu-
racy (Fig. 4C). Importance in this context is defined as the total
decrease in node Gini impurity (weighted by the proportion of
samples reaching that node) averaged over all the ensembles
(Breiman et al. 1984). From our extracted features, the spike
duration and PT ratio were the most important features, and
spread was the least important (Fig. 4C, left). For data points in
the 1-channel waveform, the samples just before the trough and
around the peak are the most important (Fig. 4C, middle). For
the multichannel waveform, the samples on the peak channel
were important (distance to soma � 0 �m), but there was also
a clear contribution of the waveform captured on the spatially
adjacent electrode sites within 100–200 �m of the soma
location, with propagation before and after the trough (Fig. 4C,
right). This importance map of multichannel waveforms
clearly showed which features in time and space were most
relevant for distinguishing neurons from different brain regions
and could be used as guidance for future feature extraction.

To investigate the misclassification errors that led to imper-
fect performance with these classifiers, we plotted confusion
matrices for different classifiers (with corresponding perfor-
mance in Fig. 4B) to show the predicted vs. true brain regions
of subsampled units (n � 462 units in total, for 77 random
samples from each area; Fig. 4D). Ce and SC are clearly
distinctive from other brain regions for all classifiers. Adding
features from the multichannel waveform helped distinguish
HP and thalamus from other brain regions. Interestingly, tha-
lamic units in the LGN could be differentiated from those in
the neighboring LP thalamic nucleus by using the multichannel
waveform, potentially based on their duration and spread (Figs.
2 and 3). Classification without subsampling resulted in higher
performance but a similar trend compared across different
feature sets (data not shown). Thus the classification results
qualitatively agree with unsupervised embedding and together
suggest that the multichannel spike waveform profile carries
additional information useful for identifying cell classes resid-
ing in distinct brain regions.

Spike Waveform Clusters Within Visual Cortex

We next examined whether the multichannel waveform can
assist the classification of cell types within a brain region. For
this analysis, we focused on waveform types in the visual
cortex. The population of visual cortical neurons have a bi-
modal distribution of spike durations (Fig. 2C), suggesting the
presence of at least two neuron types (FS and RS). To deter-
mine whether multichannel spike features can identify further
waveform types, we applied k-means clustering to the cortical
cells. Using the combined 1-channel and multichannel features,
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we estimated three waveform clusters using the conventional
elbow method and a k-cluster density function (see METHODS

and Supplemental Fig. S5). We visualized these clusters in a
two-dimensional space using a t-SNE plot (Fig. 5A) with colors
representing k-means cluster labels. One of the clusters corre-
sponds to the FS waveform, which includes units with com-
paratively short-duration spikes (Fig. 5B). In addition to the FS
cluster, which accounted for 19.6% of total units, we identified
two regular spiking waveform clusters that we label as RS1 and

RS2; these comprise 59.6% and 20.8% of the visual cortex
units, respectively. When only the 1-channel waveform was
considered, the RS1 and RS2 waveforms looked very similar in
their duration and PT ratio (Fig. 5B). However, the spatiotem-
poral structure of the multichannel spike waveforms is strik-
ingly different between the RS1 and RS2 clusters (Fig. 5C).
The average RS1 waveform propagates from below the cell
body upward along the probe toward the dorsal surface of the
brain; in contrast, the average RS2 waveform propagates a
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Fig. 5. Unsupervised clustering of extracellular waveforms in visual cortex. A: t-distributed stochastic neighbor embedding (t-SNE) for all units in visual cortex
(n � 1,609 units from 11 mice) based on features extracted from 1-channel and multichannel waveforms. Units are colored according to k-means clustering into
3 groups: fast-spiking neurons (FS; n � 315), regular-spiking neurons type 1 (RS1; n � 959), and regular-spiking neurons type 2 (RS2; n � 335). B: normalized
example waveforms for units from different clusters (each trace is the mean waveform of a unit; n � 50 sampled units for each cluster). C: average multichannel
waveforms for different clusters. D: spike propagation trajectory from soma for all units in each cluster. Gray lines indicate individual units and colored lines
indicate means � SE. E: boxplot of features for different subclasses in visual cortex. The line dividing each box indicates the median of distribution, and the
box represents the middle 50% of scores for the group. **P � 0.01; ***P � 0.001, pairwise comparisons computed with Bonferroni-corrected t-test. F:
optotagging of parvalbumin-expressing (PV�) cells in the visual cortex with Pvalb-Cre;Ai32(ChR2) mice (n � 4 insertions from 2 mice). Top: an illustration
of the experimental setup for optotagging experiments. Probes are inserted vertically in the visual cortex. Blue LED light illuminated the surface of the exposed
cortex (peak power � 10 mW). Bottom: the t-SNE representation from A with color-labeled PV� cells (n � 29). The average 1-channel waveform from PV�
cells is overlaid on the average 1-ch waveform FS cluster with Pearson correlation r � 0.98. Rec., recording. G: averaged multichannel waveform for PV� cells.
H: spike propagation trajectories for PV� cells. Error bars indicate SE. A.U., arbitrary units.
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shorter distance, symmetrically around soma (Fig. 5D). The
propagation profile for the FS cluster is also symmetric around
the cell body but is relatively flat with a median slope value not
different from zero.

Overall, the three clusters showed significant differences in
several 1-channel and multichannel features (Fig. 5E). FS
neurons had significantly shorter duration (Bonferroni-cor-
rected t-test, P �� 0.001), larger PT ratio (P �� 0.001), and
relatively fast bidirectional propagation from soma. Compari-
son of the two RS subclasses showed the total spread of RS1
units (median � 0.16 mm) was broader than that of RS2 units
(median � 0.14; Bonferroni-corrected t-test, P � 9.77E-7), the
amplitude of RS1 units (median � 0.115) was larger than that
of RS2 units (median � 0.098; Bonferroni-corrected t-test,
P � 7.67E-7), and the PT ratio of RS1 units (median � 0.45)
was larger than that of RS2 units (median � 0.40; Bonferroni-
corrected t-test, P � 1.23E-13). More strikingly, the velocity of
waveform propagation above (0.45 � 0.01 mm/ms; Bonfer-
roni-corrected P �� 0.001 compared with channel-shuffled
null distribution) and below (1.25 � 0.02 mm/ms; Bonferroni-
corrected P �� 0.001) the cell body were both positive in RS1
units, indicating a unidirectional active spike propagation,
likely starting at the spike initiation zone and propagating
upward to the cell body and along the apical dendrites of
pyramidal neurons. On the contrary, the velocity above soma
was positive for RS2 units (0.59 � 0.01 mm/ms; P �� 0.001),
but the velocity below soma was negative (�0.59 � 0.01
mm/ms), indicating a bidirectional propagation profile in RS2
cells. To determine if the velocity below soma might by itself
differentiate RS1 from RS2, we performed a test for bimodality
in the distribution of this metric, which proved significant
(Hartigan’s dip test: D � 0.049, P � 2.2E-16).

We considered the possibility that the RS1 and RS2 unit
clusters might be caused by variation in the angle of probe
insertion into the cortex rather than reflecting distinct cell
classes. If this were the case, we might observe strong biases in
the fraction of RS1 vs. RS2 units across individual probe
insertions. In contrast to this prediction, we found that all
cortical probe insertions included a relatively consistent pro-
portion of units falling into both the RS1 and RS2 clusters (per
probe, 58.7 � 1.9% of units were classified as RS1 and
21.2 � 2.1% as RS2; n � 25 probes from 11 mice). Moreover,
we found no systematic relationship between the length of
spike backpropagation on a given probe (an indicator of probe
alignment with pyramidal neuron apical dendrites) and the
proportion of RS1 and RS2 units (Pearson correlation � 0.27
and P � 0.19; Supplemental Fig. S6). In addition, the back-
propagation profile of RS1 units is stable throughout the
recording session regardless of changes in running or station-
ary behavioral states (Supplemental Fig. S7), consistent with
the previous observation (Bereshpolova et al. 2007).

To test whether the waveform clusters we identified via
k-means clustering were consistent with known genetically
defined cell types, we performed optotagging experiments in
transgenic mice expressing channelrhodopsin in PV� inhibi-
tory interneurons in the cortex [Pvalb-IRES-Cre;Ai32(ChR2);
Fig. 5F]. We used a fiber-coupled LED to illuminate the brain
surface with both pulse and ramping optostimulation patterns
to induce a rich response pattern that was used to identify
optotagged neurons whose activity profile closely followed the
stimulus light pattern (see METHODS; Supplemental Fig. S8). We

optotagged 29 PV� neurons (4 insertions from 2 mice), and
each of these units was classified as FS based on hierarchical
clustering (see METHODS). These units clearly fall into the FS
cluster shown on the t-SNE plot (Fig. 5F; 100% PV� are FS).
The PV� optotagged neurons have short-duration spikes, and
their multichannel waveform does not show evidence of uni-
directional action potential backpropagation (Fig. 5, G and H).
Thus genetically identified PV� visual cortical neurons are of
the FS waveform type.

Backpropagating Action Potentials in Cortex and
Hippocampus

A previous study showed that backpropagating action po-
tentials in layer 5 pyramidal neurons in rabbit visual cortex are
associated with a traveling wave of current sinks and sources
along the apical dendrite (Bereshpolova et al. 2007). To deter-
mine whether the three waveform types we identified in visual
cortex (VIS-FS, VIS-RS1, and VIS-RS2) have distinct patterns
of current sinks and sources, we computed the spike-triggered
current source density (sCSD; see METHODS) profile for each
type (Fig. 6A). Because sCSD is calculated as the second
spatial derivative of spike amplitude, it is less sensitive to
absolute amplitude, and thus the visualization of waveform
propagation is more salient. The VIS-FS cluster has a relatively
localized current sink centered at the cell body location. In
contrast, the VIS-RS1 sCSD profile displayed a traveling wave
that propagated unidirectionally upward toward the pia (dorsal
direction). Interestingly, the electrode sites below the soma had
a current sink earlier than the somatic sink; this is consistent
with propagation upward from the spike initiation zone toward
the cell body (Kole et al. 2008; Stuart et al. 1997). Finally, the
sCSD for the VIS-RS2 waveform was also distinct from the
RS1 waveform in that the propagation profile was more sym-
metric around the cell body and the current sinks did not
propagate as far along the probe.

Next, we examined the sCSD for units recorded in the dorsal
HP (mostly CA1 region), because backpropagation has also
been observed in neurons of this region (Callaway and Ross
1995; Golding et al. 2001; Jung et al. 1997; Spruston et al.
1995). The hippocampus contains both FS and RS units (Hu et
al. 2014), so we first used k-means clustering to divide units
into HP-FS and HP-RS types and then computed the sCSD
separately for the two waveform types (Fig. 6B). The HP-FS
cluster did not show evidence of backpropagation, but the
HP-RS waveform type displayed a clear sink traveling down-
ward along the probe (ventrally). Thus the direction of wave-
form propagation in HP-RS units was the opposite direction
compared with that in VIS-RS1 units. Given the opposite
anatomical orientation of dorsal CA1 pyramidal neurons (api-
cal dendrites pointing ventrally) vs. visual cortical pyramidal
neurons (apical dendrites pointing dorsally toward pia) (Fig.
1D), this observation provides further evidence that these
propagation events correspond to BAPs along apical dendrites.
To visualize the propagation direction for each individual unit,
we plotted the inverse velocity below vs. above the soma (Fig.
6C). Most VIS-RS1 units have positive velocities both above
and below the soma (P �� 0.001 compared with null distri-
bution), indicating unidirectional propagation toward the pia.
These points fall into the top right quadrant of the scatter plot
in Fig. 6C. In contrast, many HP-RS units fall into the bottom
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left quadrant, indicating negative velocities and unidirectional
propagation in the opposite direction.

Importantly, because BAPs are only observed in certain cell
types with proper channel composition and morphology, they
are known to be absent in some cell types, including cerebellar
Purkinje cells (Llinás and Sugimori 1980; Stuart and Häusser
1994). Thus we examined the sCSD (Fig. 6D) and velocity
profile (Fig. 6E; Supplemental Fig. S7) for subcortical wave-
forms recorded from the thalamus (LP, LGN), Ce, and SC. On
average, these regions did not show orientated spike propaga-
tion along the probe, with most units occupying the bottom
right quadrant in Fig. 6E. However, previous findings showed
evidence of BAPs in some subtypes of neurons in SC (Gale and
Murphy 2016), which accounts for the observation of some SC
units shifted toward the top right quadrant of the propagation
profile plot in Fig. 6E (see also Supplemental Fig. S7).

Both the VIS-RS1 and HP-RS clusters, which show a high
incidence of BAPs, represent a significant fraction of recorded
units in visual cortex (56.8%; Fig. 6F) and hippocampus

(81.0%; Fig. 6G). The median velocity of propagation along
apical dendrites for VIS-RS1 units is 0.45 � 0.01 mm/ms, and
the median velocity of propagation along apical dendrites for
HP-RS units is 0.30 � 0.06 mm/ms. Because the cortex has a
layered structure and most previously measured extracellular
BAPs events were identified in layer 5 pyramidal neurons in
cortex, we evaluated the VIS-RS1 distribution as a function of
cortical depth. Interestingly, VIS-RS1 units were observed
across the depth of cortex, indicating that neurons with BAPs
exist in all cortical layers in vivo in the mouse cortex (Fig. 6H;
also see Supplemental Fig. S10). The high spatial resolution of
Neuropixels probes (20-�m vertical spacing, compared with
50- to 100-�m spacing on other linear probes used in previous
studies of BAPs; Bereshpolova et al. 2007; Buzsáki and Kan-
del 1998) likely provides the ability to detect events propagat-
ing over a shorter distance along the dendrite, and this could be
the reason we observe BAP-like events in many RS neurons
located in different layers of visual cortex rather than only in
layer 5 large pyramidal neurons.

Fig. 6. Action potential backpropagation observed in subclasses of cortical and hippocampal units. A: spike-triggered current source density (sCSD) analysis
based on the average multichannel waveforms from different clusters in visual cortex (VIS). Propagation toward pia is observed in the regular-spiking neuron
type 1 (RS1) cluster (VIS-RS1). B: sCSD for fast-spiking (FS) and regular-spiking (RS) clusters in hippocampus (HP). Note opposite direction of spike
propagation in HP-RS compared with VIS-RS1 units. C: scatter plot of inverse propagation velocity (feature extracted from multichannel waveforms) above
(1/v_above) and below (1/v_below) soma for individual units in visual cortex and hippocampus (same data as shown in Fig. 3E). Top right quadrant represents
units with unidirectional dorsal propagation and is dominated by VIS-RS1 units. Bottom left quadrant represents unidirectional propagation ventrally and is
dominated by HP-RS units. Bottom right quadrant represents bidirectional propagation from soma, which is dominated by FS and VIS-RS2 units. The
multichannel waveforms (insets) are from example units in 3 quadrants for intuitive illustration. Values closer to 0 indicate faster propagation speed. D: sCSD
analysis on the average multichannel waveforms from lateral posterior nucleus (LP), lateral geniculate nucleus (LGN), cerebellum (Ce), and superior colliculus
(SC). E: scatter plot of inverse propagation velocity for LP, LGN, Ce, and SC. Most of the units are in the bottom right quadrant, indicating the propagation is
bidirectional from soma. F: fraction of different subclasses in VIS (n � 1,609 units). G: fraction of different subclasses in HP (n � 369 units). H: distribution
of waveform clusters in visual cortex as a function of cortical depth relative to layer 4. Middle of layer 4 is denoted as 0 and is estimated using stimulus-evoked
CSD (see METHODS and Supplemental Fig. S8).
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DISCUSSION

We sought to determine whether detailed analysis of multi-
channel spike waveforms captured on high-density electrode
arrays could assist in classification of cell types both within and
across different regions of the mouse brain. We measured
extracellular action potentials from single units with Neuropix-
els probes, whose dense recording site arrangement allows
detection of extracellular waveforms on multiple probe sites.
We found that both 1-channel features, such as waveform
duration, and multichannel features, such as propagation pro-
file, were useful for classifying neurons. However, supervised
classification showed significant improvement in performance
when operating on the multichannel compared with the single-
channel waveform, indicating that dense spatial sampling of
electrical fields helps to detect cell type-specific morphoelec-
trical features. Unsupervised clustering of waveforms in the
visual cortex revealed FS and RS units but also suggests further
division of RS units based on distinct waveform propagation
profiles. The propagation profiles of many cortical and hip-
pocampal RS units are strongly indicative of BAPs and dem-
onstrate the potential of the Neuropixels probe for reliable
detection of events like BAPs. Finally, we used optotagging to
investigate the relationship between our waveform clusters in
visual cortex and genetically labeled PV� inhibitory interneu-
rons. Together, these findings demonstrate the utility of dense
extracellular waveforms measured with Neuropixels probes for
assisting cell type-specific interrogation of functional circuitry
in awake, behaving animals.

Comparison with Previous Studies

Consistent with previous studies (Barthó et al. 2004; Con-
nors and Kriegstein 1986; McCormick et al. 1985; Niell and
Stryker 2008; Swadlow 2003), our work confirmed the sepa-
ration of FS and RS cells and indicated that PV� neurons are
all FS units (Hu et al. 2014). In addition, there are three main
aspects that make our study distinct from previous ones. First,
the dense sampling of the electrical field by Neuropixels probes
allowed us to obtain a rich spatiotemporal profile of the
extracellular waveform for each sorted unit. We have shown
that this additional information across space, including spread
and propagation velocity, provides enhanced classification
power and also reveals interesting physiological processes,
such as BAPs, which are important for understanding neural
computation. BAPs have been studied in a variety of neuron
types, including pyramidal cells located in different cortical
layers (Stuart et al. 1997; Waters et al. 2005). However, with
the use of extracellular recordings in awake, behaving animals,
BAPs have been primarily observed in layer 5 pyramidal
neurons (Bereshpolova et al. 2007; Buzsáki and Kandel 1998).
Our results are the first to demonstrate the potential to record
BAPs across layers in behaving animals using extracellular
recordings. Second, we compared extracellular waveforms
from six brain regions in this study. Because different brain
regions may consist of different cell types that express distinct
genes and ion channels, we made it an explicit part of our study
to compare the diversity of extracellular waveforms from
cortical and subcortical brain regions, whereas in the past, most
waveform clustering studies have considered spike waveforms
only within the local circuit. Third, we applied a diverse set of
classification algorithms to analyze cells on the basis of extra-

cellular action potential. Because we localized each unit to an
anatomical region in the brain, we could train supervised
random forest classifiers to identify features that are important
for region-specific cell-type classification. In addition, unsu-
pervised clustering algorithms revealed three waveform types
in the visual cortex (FS, RS1, and RS2), suggesting the poten-
tial to further divide cortical RS neurons on the basis of
extracellular spatiotemporal waveform profiles. However,
given the diversity of cell types classified with gene expression
(Zeng and Sanes 2017), it is likely both the RS1 and RS2
clusters contain a mixture of neuronal types. Future studies
should examine the sensory and behavioral response proper-
ties, functional interactions, and genetic profiles of these wave-
form clusters to identify potential correspondences between
these modalities. Optotagging genetically identified neuron
types will be particularly helpful to draw these links.

Spike Waveform and Cell Types Across Regions

Our study supports the hypothesis that extracellular wave-
forms can reflect cell type-specific differences in morphoelec-
trical properties across brain areas. Multichannel waveforms
were distinct across brain regions, likely reflecting the diversity
in morphoelectrical properties across areas (Ascoli et al. 2007;
Bean 2007; Stuart et al. 1997; Zeng and Sanes 2017). Thalamic
excitatory neurons typically show a multipolar soma with
numerous and highly branched dendrites in a radial or bipolar
distribution (Clascá et al. 2012; Jones 2012). Our results
showed symmetric, restricted multichannel waveforms in LGN
and LP neurons, consistent with thalamic relay neuron mor-
phology. Additionally, thalamic relay neurons do not show
reliable, long-range dendritic backpropagation (Connelly et al.
2017), which is consistent with our results. Interestingly, we
could distinctly classify LGN neurons compared with relay
neurons in the adjacent higher order thalamic nucleus, LP. A
population of LP relay neurons has been identified with rela-
tively long action potential half-width and afterhyperpolariza-
tion potentials (Li et al. 2003); this might account for classi-
fication accuracy in these regions of the thalamus and is
consistent with the longer spike duration and smaller recovery
slope we measured in LP neurons. Our recordings from cere-
bellar cells also support the view that multichannel waveforms
reflect morphoelectrical properties. Purkinje cells in the cere-
bellum have large cell bodies, which can explain the large
amplitude and broad spatial spread of the multichannel wave-
form. However, because the density of dendritic voltage-gated
sodium channels of these cells decreases rapidly with distance
from the soma, action potential amplitude drops very quickly
in the dendrite and fails to invade the dendritic tree (Llinás and
Sugimori 1980; Stuart and Häusser 1994; Vetter et al. 2001).
Thus Purkinje cells are known to lack, or have highly attenu-
ated, BAPs (Häusser et al. 2000; Stuart et al. 1997), which is
consistent with the lack of obvious BAPs in our extracellular
recordings of cerebellar cells. In contrast, many RS units in the
cortex and hippocampus showed highly directional dendritic
backpropagation, suggesting this might be a useful signature
for the identification of pyramidal neurons in the cortex and
hippocampus.

Exploiting these morphoelectrical differences across areas,
we demonstrated the ability to classify neurons across brain
regions with extracellular waveforms, which has several im-
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plications. First, it is a proof of concept that multichannel
waveform analysis can distinguish neurons with distinct mor-
phoelectrical properties. Second, this application could be
particularly useful for in vivo recordings of dense structures
with small nuclei or subdivisions (e.g., other nuclei in thalamus
or other subcortical areas) for which purely anatomical regis-
tration of units can be especially challenging. Third, the ability
to classify cells across brains regions should generalize to other
high-density recording probes that also provide spatially dense
sampling of spike waveforms. In the future, recordings with
even higher density probes (especially with 2- or 3-dimen-
sional coverage) will enhance the ability to identify cell types
purely on the basis of extracellular signals. Dense three-
dimensional sampling could generate “electrical images” that
capture fine-scale nuances in morphoelectrical properties and
allow cross-experiment registration of neurons independently
of the geometric alignment of the probe and recorded neurons.

Backpropagating Action Potentials

BAPs are active events that propagate from the spike initi-
ation zone, invade the soma, and then travel along dendrites via
depolarization of voltage-gated sodium channels or calcium
channels (Häusser et al. 2000; Stuart et al. 1997; Waters et al.
2005). BAPs have been studied in vitro and in vivo using both
dendritic electrical recording and imaging methodologies (Cal-
laway and Ross 1995; Jung et al. 1997; Kaiser et al. 2001;
Kamondi et al. 1998; Martina et al. 2000; Shai 2016; Spruston
et al. 1995; Stuart et al. 1997; Svoboda et al. 1997; Waters et
al. 2005). Interestingly, different neuronal types can show
differences in BAPs, which are caused by a combination of
both channel density and dendritic morphology (Häusser et al.
2000; Stuart et al. 1997; Vetter et al. 2001). In pyramidal
neurons, BAPs can serve important computational roles, in-
cluding providing a mechanism for synaptic plasticity (Magee
and Johnston 1997; Markram et al. 1997) and supporting
dendritic integration of bottom-up and top-down signals (Lar-
kum et al. 1999; Siegel et al. 2000). Moreover, BAPs might be
subject to dynamic modulation by behavioral experience
(Quirk et al. 2001; but see Bereshpolova et al. 2007). There-
fore, the ability to routinely measure BAPs in behaving ani-
mals and associate them with functional response properties
will be of great physiological importance for understanding the
computational roles of spike backpropagation (Häusser et al.
2000; Linden 1999; Sjöström and Häusser 2006).

Two previous studies have used linear multichannel extra-
cellular electrode arrays to investigate BAPs in the sensory
cortex of awake rat (Buzsáki and Kandel 1998) and rabbit
(Bereshpolova et al. 2007). In both cases, the units displaying
BAPs were layer 5 RS units; importantly, FS interneurons did
not show these traveling waves. In our study, the enhanced
spatial sampling from the Neuropixels probe revealed that
many units in the hippocampus and cortex had dendritic
propagation events across different layers. We also compared
the measured BAPs parameters with previous studies. BAPs
measured in the rat traveled up to 400 �m in distance (Buzsáki
and Kandel 1998) and up to 800 �m in rabbit (Bereshpolova et
al. 2007), whereas the maximum spread of BAPs we measured
is 380 �m (with a mean of 160 �m), which is similar to that in
rat but shorter than in rabbit. Previous studies also showed
faster propagation speed of BAPs [0.67m/s from Buzsáki and

Kandel (1998) and 0.78 m/s from Bereshpolova et al. (2007)]
compared with ours (0.54 m/s on average). There are several
factors that could account for these differences. First, the
previous studies took great care to perfectly align the linear
probe parallel with the apical dendrites of layer 5 pyramidal
neurons. In our study, we did not explicitly require such
rigorous alignment, and this could lead to an underestimation
of the distance traveled and the speed of propagation, because
the apical dendrite might diverge away from the probe. None-
theless, our primary goal was to identify features of spikes that
can differentiate cells types, and thus capturing the first 100–
200 �m of BAP travel was sufficient for this purpose. Second,
we sought to record many neurons simultaneously and across
layers instead of tailoring the recording to one or a few
perfectly aligned large and extended layer 5 neurons. Thus the
shorter apical dendrites of layer 4 and layer 2/3 neurons may
contribute to the smaller averaged BAPs spread we measured.
Third, the mouse cortex is not as thick as that of larger
mammals, and in addition, the morphological and electrical
properties of pyramidal apical dendrites may differ across
species.

Future Studies

Although our present focus was on spike waveform features,
future studies of cell classification could include additio-
nal information related to spiking firing rates, bursting, and
adaptation (Nowak et al. 2003), spike-train autocorrelation
(Ebbesen et al. 2016; English et al. 2017), and cross-correlation
analysis to define excitatory and inhibitory cells by inferring
monosynaptic functional interactions (Barthó et al. 2004;
Sirota et al. 2008). Combining multichannel waveforms and
spike train features should provide even greater power to reveal
distinct cell type-specific properties useful for classification
from purely electrophysiological recordings in vivo. In addi-
tion, biophysical modeling can provide important information
about how cell type-specific morphoelectrical features are
reflected in the extracellular spike waveform and how this
depends on factors such as electrode sampling density and
probe geometry (Buccino et al. 2018). An important ultimate
use of the waveform analysis methods we describe is to study
the response properties of different cell classes and their
functional roles in complex neural networks. Neuropixels and
other high-density probes (Neto et al. 2016; Rios et al. 2016;
Scholvin et al. 2016; Shobe et al. 2015) are now being used to
generate large-scale data sets in the brain of awake mice
performing a variety of sensory, behavioral, and cognitive
tasks. Waveform analysis should aid in cell-type identification
in vivo and may also reveal the physiological spike properties
such as BAPs that could provide additional insight into the
functional logic of neural circuit operations.
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